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FOREWORD

The research on which this report is based was performed by the Aero-
nautical and Astronautical Engineering Department of the The University of
Michigan, Ann Arbor, Michigan, under Air Force Contract AF 33(616)-8385,
Project No. 6114, "Training Equipment, Simulators, and Techniques for Air
Force Systems, " and Task No. 611407, '"Mathematical Models.' Professors
G. Isakson and R. M. Howe directed the research for the University of Michigan.
Mr. L. J. Kummeth of the Simulation Techniques Section, Training Research
Branch, Behavioral Sciences Laboratory, Aerospace Medical Research Labora-
tories, was project engineer for the Aeronautical Systems Division.

This report is Part IV of a series of several parts under the general title,
"Flight Simulation of Orbital and Reentry Vehicles.' Research covered
began in June 1960 and was completed in November 1961.

The author is indebted to Mr. Robert O. Aller for the analysis of the

equilibrium trajectory in the Appendix and to Mr. Joseph L.. LeMay for program-
ming of computations.
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ABSTRACT

The present report is concerned with two distinct aspects of the simulation
problem for a lifting reentry vehicle.

The first relates to the effects of earth oblateness on the flight path of such
a vehicle. The effects of oblateness of the gravity field on the orbital motion of
a satellite are surveyed and are found to be small for a single orbit, probably
sufficiently small to be neglected in a simulation for training purposes. Some of
these effects are cumulative and would become substantial in a flight of long
duration. The effects of oblateness of the earth's surface and atmosphere on the
reentry trajectory are studied independently of the gravity oblateness effects.
Typical trajectories are computed for the case of a nonrotating earth. Under
the most extreme conditions, there is found to be a change in range of 690 nautical
miles for a nominal once-around flight.

The second aspect relates to the characteristic oscillatory motion of the
vehicle during reentry. The pertinent literature on this topic is surveyed.
Approximate expressions for the period of the characteristic long-period and
short-period oscillations are presented.

PUBLICATION REVIEW

MW ol % o

WALTER F. GRETHER

Technical Director

Behavioral Sciences Laboratory
Aerospace Medical Research Laboratories
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L Introduction

The present part of a comprehensive report on "Flight Simulation of
Orbital and Reentry Vehicles" is concerned with two distinct aspects of the
simulation problem for a lifting reentry vehicle.

The first relates to the effects of earth oblateness on the flight path
of such a vehicle and provides information of value in assessing the impor-
tance of such effects and the need for their inclusion in a simulation for crew
training purposes.

These effects are of two different types. Firstly, there is the depar-
ture of the earth's gravitational field from spherical symmetry. Secondly,
there is the departure of the earth's atmosphere from spherical symmetry
and its effect on air density variation along a particular flight path. While
these two factors will be present simultaneously and exert a mutual influence,
it is conjectured here that this mutual influence will not be large, and, conse-
quently, that the importance of the two factors can be assessed independently.
This is done in the following sections.

The second aspect of the flight simulation problem relates to the
oscillatory nature of the reentry flight path when disturbances to a so-called
"equilibrium' flight path are present. If a faithful simulation is to be
achieved, the computing equipment used must be capable of generating such
oscillations accurately. Toward this end, a knowledge of the frequencies of
the characteristic oscillatory motions is of value. A survey of the available
literature bearing on this topic is included in the present report.




II. Effect of Oblateness of the Earth's Gravitational Field on the Flight Path
of an Orbiting Vehicle

In the absence of aerodynamic forces, the oblateness of the earth and its
attendant distortion of the earth's gravity field has four main effects on the orbit
of a near earth-satellite. These are:

(1) A rotation of the orbital plar 2 about the earth's axis in a direction
opposite to the motion of the satellite.

(2) A change in the period of the orbit with change in inclination of the
orbital plane.

(3) A change in mean radial distance from the earth's center with change
in inclination of the orbital plane, angular momentum of the satellite being
maintained constant. In addition, there is a periodic variation of the radial
distance apart from that associated with eccentricity of the orbit, so that the
orbit departs from an elliptical shape.

(4) A rotation of the principal axes of the orbit in the orbital plane.

The rotation of the orbital plane about the earth's axis is given in Ref. 1
as being approximately equal to 10. 0 (Ry/T) 3.5 cos a degrees/day, where R,
is the equatorial radius of the earth, T is the mean value of the satellite's
distance from the earth's center, and a is the inclination of the orbital plane
to the earth's equatorial plane. For a relatively low orbit, this expression can
further be simplified by setting R/T equal to unity, and,introducing an approximate
value of 90 minutes for the orbital period, it becomes 0.62 cos a deg. /revolution.
This represents a lateral displacement of the flight path of 37. 3 sin a cos a
nautical miles at successive equatorial crossings in a given direction. The
lateral displacement achieves a maximum when a = 45° and is then approximately
i 13. 6 nautical miles.

The difference in orbital period between an equatorial orbit and an inclined
| orbit, for the same mean radius to the earth's center, is shown in Ref. 1 to be

b approximately 14.5 JR/T sin? a seconds. The maximum difference is thus seen
to be between an equatorial and polar orbit, and is then about 14. 5 seconds, or
about 0. 28 percent of the period.

For a given angular momentum of the satellite, the mean radial distance
from the earth's center increases continuously as a varies from 0° to 90°, It
is about 14 nautical miles, or 85, 000 feet, greater for a polar orbit than for an
equatorial orbit (Ref. 1).

The oscillation in radial distance has a period equal to one-half the orbital
period and an amplitude of app-oximately 0.94 (R/F) sin? a nautical miles or,
setting R/T 2 1, about 5700 sii* a feet (Ref. 1). The points of maximum radial
distance occur at the equatorial crossings and the points of minimum radial



distance correspond to ttmae points of maximum latitude. There is thus seen to
be some tendency for the= orbit to follow the curvature of the earth's surface.
Since the cylic variation ofthe earth's radius in the plane of the orbit has an
amplitude of 35, 230 sin® —afeet, it is seen that this tendency is only partially
realized.

The rotation of the principal axes of the orbit in the orbital plane is given
approximately by 5. 0 (RJY)3' 5 (5 cos®a - 1) degrees/day (Ref. 1). This
represents a rotation of -about 20 degrees/day, or 1. 25 degree/revolution, in
the direction of the satel lite's motion for near-equatorial orbits, and 5 degrees/
day, or 0. 31 degree/rev olition, in a direction opposite to the satellite's motion
for a polar orbit.

These effects are asmall, or can be compensated for by an appropriate
adjustment of conditions atinjection in a simulation based on a spherical earth,
in the case of a once-arcund or shorter flight. I, however, the flight involves
many circuits of the ear@h, two of the effects, namely the rotation of the orbital
plane about the earth's a. xis and the rotation of the principal axes of the orbit in
the orbital plane, are cu_mulative and become substantial. Thus, it appears that
oblateness gravity effect_ s could be omitted in the simulation of a once-around or
shorter flight with little sacrifice in the faithfulness of the simulation. On the
other hand, it would like: lybe desirable to include such effects if an entire flight
of much longer duration was to be simulated.
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IIl.  Effect of Oblateness of the Earth's Atmosphere on the Reentry Flight Path
of a Lifting Vehicle

In this section we disregard the gravity effects of oblateness and concentrate
attention on the geometric effects of oblateness of the earth's surface and the
associated departure of the earth's atmosphere from spherical symmetry. The
extent of the oblateness may be realized by noting that the radial distance from
the center to the surface of the earth is estimated to be 70, 459 feet less at the
poles than at the equator.

Atmospheric density is assumed here to be a function only of altitude above
the surface of the earth, described as an oblate spheroid, and consequently inde-
pendent of latitude and longitude. It has been found (Ref. 2) that in the altitude
range of interest in reentry problems (0 - 400, 000 feet) the density variation can
| be approximated satisfactory by the following exponential form,

p=pge P (3. 1)

where p_ = 0. 0027 slug/ft. 3 and is seen to differ somewhat from standard sea
level density, and B = 1/23, 500 ft. -1,

Under these circumstances, the variation of air density along a given flight
path referred to axes with origin at the earth's center will be different in the case
of an oblate earth as compared with a spherical earth, since altitude variation
will be different in the two cases. It follows that, with the conditions at injection
the same, the reentry flight path in the case of an oblate earth will differ from
that for a spherical earth.

We now proceed to evaluate this difference on the basis of a simplified
analysis of the reentry flight path in the two cases. In this analysis it is assumed
that the flight path lies in a plane passing through the earth's center. This
assumption stems from the neglect of oblateness gravity effects, the assumed
absence of rolling and yawing motion of the vehicle, and the neglect of earth
rotation. It is furthermore assumed that the vehicle is at all times in moment
equilibrium about its pitch axis and that the lift and drag coefficients are constant.

The coordinates and motion variables of the vzhicle are shown in Fig. 1.

The following two kinetic equations for forces normal and parallel to the
velocity vector may now be written,

L+mV(0+y)-mgcosy = 0 (3. 2)

-D+mgsiny -mV = 0 (3. 3)
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Fig. 1 - Coordinates and motion variables of vehicle

In addition, Eq. (3. 1) and the following three relations are needed,

r = -Vsiny
r0 = V cos ¥
r=R+h

as well as the aerodynamic relations,
1

2 - 2 L
L=3pVEAC, = 3p VA C, (D)

Assuming a spherical earth (R = constant) and making the following additional

simplifying assumptions applicable to a shallow glide trajectory,

Y small (cosYy=1, siny=Y)

Y=0
gsiny<<\./

(3. 4)

(3. 5)

(3.6)

(3.7)

(3. 8)

e i+ ey ¢ b s

s

U U U .



several authors (e. g., Ref. 3) have obtained a simple approximate analytical
solution yielding a so-called ""equilibrium trajectory.'" This trajectory is
characterized by the fact that the gravity force is in equilibrium with the lift
and the centrifugal force associated with motion at constant radius from the
earth's center, and deceleration along the flight path is caused only by drag
forces. Furthermore, no oscillatory component is present. For a vehicle
with given L/D ratio and drag mass parameter Mp = Cp A po/2m, only one
such trajectory exists, and conditions at injection (h, V, Y) must correspond to
conditions at some point along this standard trajectory. If they do not, the
trajectory will have an oscillatory characteristic and a more comprehensive
analysis is necessary. An approximate solution for the oscillatory motion is
discussed in Section 3.

It should be noted that an exact solution of the governing equations will
also yield an equilibrium, or non-oscillatory, trajectory, provided, of course,
that conditions at injection are appropriate, It is somewhat different from the
approximate analytical solution discussed above because of the inclusion of the
small terms neglected in the simpler analysis. These include the effect of
curvature of the flight path associated with a varying angle of descent (Y) and
the component of the gravity force along the flight path.

The simplicity of the approximate analytical solution for the equilibrium
trajectory raises the hope that a corresponding analysis may be performed in
the case of the oblate earth and the effects of oblateness determined in that way.
A closer examination of the nature of the approximate analytical result, however,
reveals that such a hope is not well-founded. This result indicates that the
velocity and angle of descent at a given altitude along the flight path depend
almost entirely on the air density and are very insensitive to small changes in
radial distance from the earth's center. Consequently, the small changes in
radial distance from the earth's center associated with oblateness cannot be
expected to cause significant changes in the trajectory. This is shown in Ref.
4, where the trajectories obtained in the two cases from such an analysis are
essentially the same. The analysis is repeated in the Appendix of the present
report.

It must be concluded that if oblateness introduces substantial effects,
they will be associated with the influence of the small terms neglected in the
simpler analysis, particularly the term in V. For this reason, an exact

solution of the governing equations, Eqs. (3. 1) to (3. 6) inclusive, was under-
taken.

The radial distance R from the center to the surface of an oblate earth
can be related to the geocentric latitude as follows (Ref. 5),

R =R, (! - £ sin? §) (3. 9)
where

f=0.003367
R, = 20,926, 428 feet.

6
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From Fig. 2 it can be seen that § can be related to the angular coordinate
in the orbital plane as follows,

sin { = sina sing A (3. 10)
permitting the rewriting of Eq. (3. 9) in the form,
R=R_(1 - f sin®a sin?¢) (3. 11)

i Furthermore,
9=0_+0 (3. 12)

Combining Egs. (3.6), (3.9) and (3. 10), we have
-y _ .2 2
h=r Ro{l f sina sin (¢°+0)} (3. 13)
Egs. (3.1) to (3. 5) inclusive and Eqs. (3. 7), (3. 8) and (3. 13) now comprise
the set to be solved. A reduction in the number of dependent variables can be

effected by a transformation in which time is replaced by 0 as the independent
variable. Thus, from Eq. (3. 5),

o= Vc:sY (3. 14)

and, applying this relation.
vy o= gy YeooX .y con Y (3. 15)
7% ;,::_} a=y'1_?:_°1’_ (3. 16)
Pagk 6=y Yoosd (3. 17)

; where primes denote differentiation with respect to 0.

L]

Substituting Eqs. (3.1), (3.7), (3.8), (3.15), (3. 16) and (3. 17) into Eqgs.
(3. 2) to (3. 5) inclusive, and defining the drag mass parameter Mp = CpA pollm,

we have
: L -Bh 2 V2 ' =
| DMDe V+r cosY (1+Y)-gcosY =0 (3.18)
} -gh .2 . 2,¢ Cos Y _
MDe Vi +gsin¥ - (V¥ —zr—-o (3.19)
r'=-rtan Y (3. 20)

which, together with Eq. (3. 13), comprise the set to be solved.

The variable V2 can be put in a non-dimensional form by dividing it by the
square of the circular orbital velocity corresponding to radial distance r from the
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Fig. 2 - Geometric Parameters for an Inclined Orbit



center of the earth. Thus, we define

2 2
gL .V (3. 21)
rg W

where g = p/r?, with p the gravitational constant neglecting oblateness effects.

We can now write
]

(V) = (VY £V
(3. 22)
= (V¥)'gr-Vigr!
Substituting Eqs. (3. 21) and (3. 22) into Eqs. (3. 18) and (3. 19), and
rearranging, we have
1 bl: MD e-ph r
M (. 23)
—_ 2 Mp e.ph rv?
(V3) =(2-V¥tan ¥y - o5y (3. 24)

which, together with Eqs. (3. 20) and (3. 13), comprise the set of equations to
be solved.

Round-off error in a digital solution can be greatly reduced by replacing
Eq. (3. 20) by
(6r)' = - (6r + Ry) tan ¥ (3. 25)

where

6r = r - R, (3. 26)
and is small in magnitude as compared with r. Eq. (3. 13) can now be replaced
by

h= 6r+ R f sin’a sin? (§_ + 0) (3. 27)

Rewriting Eq. (3. 26) in the form
r= 6r+ Ro (3. 28)

we now have finally the set of equations (3. 23), (3.24), (3. 25), (3. 27) and (3. 28).

Initial conditions were established on the basis of the approximate solution
for the equilibrium trajectory (Appendix). A range was selected, and the appro-
priate initial altitude determined from the approximate analysis. Corresponding
initial values of velocity and descent angle were then determined from the following
approximate expressions developed in the Appendix,

- 1

v = (3. 29)

L P

~)




Y- - 20+ Mpe s pR taintasinz(9,+0)} (3. 30)
T 8k + pr
l1+= Mp e r

D

Digital computer solutions were obtained using a Runge-Kutta method of
integration. The results in terms of range are shown in Table 1 and some typical
trajectories are shown in Fig. 3. It is seen that for a given inclination of the
orbital plane with respect to the equatorial plane, the range for a given initial
altitude and corresponding values of velocity and descent angle, as determined
from Eqs. (3. 29) and (3. 30), is moderately sensitive to latitude of the injection
point. The longest and shortest range occur in the case of injection at the equator
and pole respectively for a polar orbit, the difference in range for these two cases
being 1260 n. miles in a nominal once-around flight. The ccrtresponding range
for a spherical earth is intermediate in value, being 690 n. miles less than the
range for the oblate earth with injection at the equator and 570 n. miles greater
than the range for the oblate earth with injection at a pole.

Oblateness effects decrease markedly with decrease in range, and for a
nominal range of 180° the effect on range is only about one-tenth as large as in
the case of a nominal range of 360°.

Fig. 3 shows that the application of initial conditions based on the approxi-
mate equilibrium trajectory results in a non-oscillatory trajectory in the case
of a spherical earth, but introduces an oscillatory component into the oblate
earth trajectories. The program of computations was not carried far enough to
indicate whether an equilibrium trajectory, in the sense of being non-oscillatory,
does in fact exist in the case of the oblate-earth for constant lift and drag co-
efficients as assumed here.

10
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TABLE 1

EFFECT OF OBLATENESS ON RANGE

(Gravity Oblateness Effect Neglected)

l"De.aparture from corresponding spherical earth range

11

Earth | Orbit Initial Conditions Injection |Range Dﬂ?;?n:ial*
Shape |Incl, o] w2 h - ft Y - rad | Lat., §,] deg. n i
Nominal Range = 360°
Spherical - . 98483 | 329, 764 | . 000698 - 369. 0 -
Oblate 90° |.98483 " . 000698 0° 380. 5 +690
" 90° |.98488 " . 000700 90° |359.5 ~570
n 90° | .98486 " . 003796 45°  |363.0 -360
" 90° |.98486 " L. 002398 | -45° [376.0 +420
" 45° |.98483 " . 000698 0° 374.5 +330
Nominal Range = 180°
Spherical - . 87685 | 277,759 |. 000836 - 183. 0 -
Oblate 90° |. 87685 " . 000836 0° 184. 2 +72
" 90° |.87721 " . 000838 90° 182.0 -60
____J— _J—_Jh_r e e———
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IV. Frequencies of the Characteristic Oscillatory Motions of a Lifting Reentry
Vehicle

Lifting reentry vehicles, when disturbed from an equilibrium flight path,
have been shown analytically to exhibit characteristic oscillatory motions which
may be identified with those of a conventional airplane. That is, there is a
characteristic long-period, or phugoid, motion in which the velocity, pitch angle
and altitude vary periodically, while the angle of attack remains essentially con-
stant, and there is a characteristic short-period motion in which thc angle of
attack and pitch angle vary periodically, while the velocity remains essentially
constant.

s e S

A significant difference in the case of the reentry vehicle is the fact that
the period of the so-called ''short-period" motion increases greatly at altitudes
approaching orbital conditions and may exceed that of the long-period motion,
under certain circumstances even degenerating into a simple divergence at
sufficiently high altitude (Ref. 6).

Different approaches have been used in the analysis of these motions. In
{ Ref. 7 the long-period motion and in Ref. 8 the short-period motion are analyzed
i on the basis of small disturbances from the equilibrium, or non-oscillatory,
reentry flight path. This leads to linear differential equations with time-varying !
; coefficients, since conditions along the equilibrium flight path vary.

e e, e -

In Ref. 6, Etkin considers small disturbances from the steady orbital flight
, of a lifting self-propelled vehicle in a circular orbit. In such a flight the velocity
of the vehicle will be less than true orbital velocity because of the presence of
lift, and sufficient thrust must be provided to overcome drag. While this assumed
flight is substantially different from the reentry flight of an unpowered glide
vehicle, it is reasonable to expect that conditions at corresponding altitudes in
the two cases will be sufficiently similar that at least the frequencies, if not the
damping characteristics, of the oscillatory motions will be similar in the two
cases. The principal advantage of this type of approach is the fact that it rep-
resents a simple extension of the classical methods used in airplane stability
analysis,

Returning to the analysis of Ref. 7, where small disturbances in velocity,
glide angle and altitude from an approximate analytically-determined equilibrium
flight path, as discussed in Section 3, are considered, it is found that the frequency
of the characteristic oscillatory motion, which in this case is the long-period
motion, is given approximately by !

w = -ﬁfg sech T (4. 1)
where
?=%E(tc-t) (4. 2)

t. is a constant of integration which may be determined by substituting Eq. (4. 2)
into the following relation applicable to the equilibrium trajectory,

13
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Bh = In (£ Mp r sink® T) (4. 3)
and introducing initial values of the variable quantities. This yields,
3
_L [r .=l L -ph "2
t, = 6] E sinh (D Mp e r) (4. 4)

in which the values of h, r and g are initial values.

Alternatively, by substitution of Eq. (4. 3) into Eq. (4. 1), and as a further
approximation setting r = R, the period T can be expressed in terms of h as
follows, “ph

R

L
+BMDe

L -Bh
D MDe Roﬂgo

o

T =2%» (4. 5)

For the parametric values used in the example computations of Section 3,
that is, L/D = 3, Mp = . 0003, we obtain the curve of period versus altitude shown
in Fig. 4. From Eq. (4. 5) it can be seen that the period decreases continuously
as altitude decreases. Furthermore, it increases indefinitely as the air density
approaches zero. This limiting value is not realistic and is a consequence of
approximations introduced into the analysis. In a more precise analysis it would
be found that the period approaches that of a single orbit, since the effect of a
disturbance is to change the eccentricity of the orbit. In fact, when oblateness
gravity effects are included, and the orbit is not equatorial, there is also an
oscillation with period equal to half the orbital period, as discussed in Section 2.

Turning now to the analysis of Ref. 8, where velocity perturbations are
suppressed and pitching perturbations relative to the flight path considered, it
is found that the angle of attack variation may be approximated by an expression
which contain i the oscillatory factors cos &(s) and sin & (s), where

& (s) = S‘ . LAl ¢ g (4. 6)
y a
and s is the distance traversed along the flight path.

In the course of traversing one cycle of oscillation, the function & (s) will
change by the amount 2. Thus, changing to time variable t by substituting
ds = V dt, we can write t+ T

pAL -
gl ZTy Cmg Vdt=2r (4. 7)

; where T is the period of the oscillation. Assuming that the integrand does not
‘ vary significantly during one cycle of oscillation, Eq. (4. 7) yields finally

f , Iy
; T=2%n . — (4. 8)
qAl Cm(1

where q is the dynamic pressure.
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It is seen that if the variation of Cy, A is disregarded, the period achieves
a minimum value when the dynamic pressure is a maximum and increase.
indefinitely as the density approaches zero. This solution is identical with the
classical approximate solution for an airplane when only the pitching degree of
freedom is included. Significant differences occur only in the damping character-
istics.

Etkin's results (Ref. 6) indicate trends which are in general consistent
with those discussed above. The asymptotic behavior of the long period mode
as air density approaches zero is more realistic in his analysis than that of Ref.
7, as already discussed. In the case of the short-period mode he obtains an
approximate expression for the period which is similar to Eq. (4. 8) but includes
an additional term in the denominator, as follows,

T = 2w J- b (4. 9)

qAt Cma + Me

The presence of the derivative is associated with an effect of variation
of gravity forces with distance from the center of the earth. Mass elements of
the vehicle which are farther from the earth than others experience a smaller
gravity force, and this can be shown to give rise to a pitching moment given by

M=-%%(Ix-lz)sin29 (4. 10)

where g is the value of the gravitational acceleration at the centroid of the vehicle,
©is the angle between the z-axis and the radius vector from the center of the
earth. The x and z axes are presumed to be principal axes of the vehicle. It is
seen that this moment tends to align the major principal axis with the radius
vector from the center of the earth. Differentiating Eq. (4. 10) with respect to O,

Mg =-3%(Ix-ly)cosle (4. 11)

is small in comparison with q Al C,, except at very high altitudes.
In the limiting case of zero air density, Eq. (4.9) becomes

I
T = 2%f- X (4. 12)

)

When, as one would expect, I, <I,, Mg is negative for ©<45°, and the
disturbed motion is a simple divergence. On the other hand, for large angles of
incidence (© > 459) Mg is positive and the disturbed motion is oscillatory with a
period of the same order of magnitude as the orbital period.

16



O T i ]

V. Conc ludiig_R emarks

The information provided in the present report relative to oblateness
effects, both gravity and atmospheric, on the trajectory of a glide reentry
vehicle indicates that these effects, while not trivial, could be adequately com-
pensated for by appropriate adjustment of initial conditions in a simulation
based on a spherical earth. This is especially true in the case of a once-
around or shorter flight. In the case of flights of much longer duration, certain
of the effects of oblateness of the gravity field are cumulative and become sub-
stantial. It is, however, doubtful whether there would be a need to simulate
such flights in their entirety.

The only consideration which would dictate the inclusion of oblateness
effects would be the use, in the simulation, of actual flight components, such
as components of the guidance system, which are designed to account for earth
oblateness. On the other hand, it should be noted that the inclusion of earth
oblateness effects does not complicate the flight equations greatly as seen in
Parts I and II of the present report, so that it may be desirable to include them
for the sake of completeness.

The information on frequency of the characteristic oscillatory motions of
the vehicle during reentry indicates that the period of the ''long period' motion
decreases continuously as the vehicle descends and asymptotically approaches
the value Zw/Jp 8o or 172 seconds. This result is based on small disturbances
from an equilibrium trajectory when lift and drag coefficients remain constant
and would not be applicable when the vehicle approaches a landing, particularly
if the vehicle is powered in that phase of its flight.

The period of the '"short period' motion achieves a minimum approximately
when the dynamic pressure reaches a maximum. It may then be approximated by

a simple expression based on the static longitudinal stability derivative of the
vehicle.

The reader will have noted that the effect of earth rotation on vehicle
trajectory has not been considered in the present report. The fact that this
effect can be expected to be suhstantial in the case of a lifting vehicle and its
inclusion in a simulation introduces little complication makes it advisable that
it be included. For this reason no detailed study of it was undertaken.

17



APPENDIX

‘Approximate Equilibrium Trajectory For Oblate Earth

Introducing the following simplifying assumptions,

Y small (cos Y =1, sin¥=Y)

Yy=20
gsinY<<\7

Eqs. (3.2) to (3. 5) inclusive become

2
2 + v._ = 8 (Al)
m r
. D D ,L -ph _.,
Z e == (= 2
v - T (D Mp e vé) (A2)
r=-Vy (A3)
sV
Q= Y (A4)
Substituting l
L L -Bh 2 |
;—n = D MDO v
into Eq. (Al), we obtain
L -ph o, V2
) Mp e Ve + — =8 (A5)
or,
o 1
vi-= (A6)
1+ Mpe PPy

l D

This expression is seen not to depend explicitly on oblateness. However, there
is a small implicit dependence on oblateness through the effect of oblateness on
r for a given value of h.

Turning now to the descent angle, we differentiate Eq. (Al) with respect
to t, neglecting the small variation in g with r,

- - * v - z r
%MD(-m’.e'”‘v‘+zep"vvnz‘”’"z LAk S (A7)
i r
| From Eq. (3.13),
h=%4+ R fsintasin2(d +0)- 0 (A8)

or, substituting Eq. (A4),

18
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y
r

ﬁ:i‘+Rofein'alinZ(¢o+0)~ (A9)

B GNP ¥

Substituting Eqs. (A2) and (A9) into Eq. (A7) and solving for r, we obtain

F= T v-ph {-2%(—15-MDe-phr)(—;-MDe-phr-fl)
l1+4= M e r (pr)
DD L -gh
-5 Mp e " TR, sinta sinz(¢°+0)} (A10) |
The angle of descent is now obtained by substituting Eq. (Ai0) into Eq. (A3), ;
Y = i ;
\'
1 D -gh . .
= 1 {ZI(% Mp e P r+ l)+pRofsmzo.lmZ(Co+0)}(All) '
—— 4 Br ;
3 D e r :

-Bh -1
Except at very high altitudes, ﬂr>>(—ll§- MD e P r) , so that Eq. (All)may

be simplified to the form,

D L -Bh Ro . 2 .
= o —— —— z
Yy=2 T ( Mpe r+1)/pr+ = f sin asxn2(¢°+0) (Al2)

in which the firsi term corresponds to the solution for a spherical earth, while
the second term is very nearly equal to the angle between the local tangent to

the earth's surface in the plane of the trajectory and the local horizontal, defined
as the plane normal to the radius vector from the earth's center.

According to this result, the descent angle of the vehicle relative to a

tangent to the earth's surface in the plane of the trajectory is virtually the same

in the case of the oblate earth as it is in the case of the spherical earth. This
indicates that the altitude variation along the flight path will be essentially the
same in the two cases, since the velocity variation is also essentially the same

in the two cases. Thus, on the basis of the present analysis the range correspond-
ing to given initial conditions will not be appreciably influenced by oblateness. ]
This range can be shown (Ref. 3) to be given by the expression,

1-V‘F

- 1 L
d-islnl-.vlz

(Al3)

where d is in terms of the an%nar coordinate 9, and VI and VF are respectively
the initial and final values of V.
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